MENÚ CERRAR

Noticia

04/07/2012 - ¿Qué es el bosón de Higgs?
Menéame
Boton de compartir en Facebook Enviar a un amigo

 

Es un tipo de partícula elemental que se cree tiene un papel fundamental en el mecanismo por el que se origina la masa en el Universo. La confirmación o refutación de su existencia es uno de los objetivos del Gran Colisionador de Hadrones (LHC, por sus siglas en inglés), el mayor y más potente acelerador de partículas del mundo que opera el Laboratorio Europeo de Física de Partículas (CERN) en la frontera francoosuiza, cerca de Ginebra.

 

 

¿Por qué es tan importante el bosón de Higgs?

 

Porque es la única partícula predicha por el Modelo Estándar de Física de Partículas que aún no   ha  sido  descubierta.  El   Modelo  Estándar  describe  perfectamente  las  partículas elementales   y   sus   interacciones,  pero   queda   una   parte   importante   por   confirmar, precisamente la que da respuesta al origen de la masa. Sin masa, el Universo sería un lugar muy diferente. Si el electrón no tuviera masa no habría átomos, con lo cual no existiría la materia como la conocemos, por lo que tampoco habría química, ni biología ni existiríamos nosotros mismos.

 

Para explicar esto, varios físicos, entre ellos el británico Peter Higgs, postularon en los años 60 del siglo XX un mecanismo que se conoce como el “campo de Higgs”. Al igual que el fotón es el componente fundamental del campo electromagnético y de la luz, el campo de Higgs requiere la existencia de una partícula que lo componga, que los físicos llaman “bosón de Higgs”.

 

 

¿Cómo funciona el mecanismo de Higgs?

 

El campo de Higgs sería una especie de continuo que se extiende por todo el espacio, formado por un incontable número de bosones de Higgs. La masa de las partículas estaría causada por una “fricción” con el campo de Higgs, por lo que las partículas que tienen una fricción mayor con este campo tienen una masa mayor.

 

 

¿Qué es un ‘bosón’?

 

Las partículas subatómicas se dividen en dos tipos: fermiones y bosones. Los fermiones son partículas que componen la materia, y los bosones portan las fuerzas o interacciones. Los componentes del átomo (electrones, protones y neutrones) son fermiones, mientras que el fotón, el gluón y los bosones W y Z, responsables respectivamente de las fuerzas  electromagnética, nuclear fuerte y nuclear débil, son bosones.

 

 

¿Cómo se puede detectar el bosón de Higgs?

 

El bosón de Higgs no se puede detectar directamente, ya que una vez que se produce se desintegra casi instantáneamente dando lugar a otras partículas elementales más familiares. Lo que se pueden ver son sus “huellas”, esas otras partículas que podrán ser detectadas en el LHC. En el interior del anillo del acelerador colisionan protones entre sí a una velocidad cercana a la de la luz.

 

Cuando se producen las colisiones en puntos estratégicos donde están situados grandes detectores, la energía del movimiento se libera y queda disponible para que se generen otras partículas. Cuanto mayor sea la energía de las partículas que chocan más masa podrán tener las resultantes, según la famosa ecuación de Einstein E=mc2.

 

Debido a que la teoría no establece su masa sino un amplio rango de valores posibles, se requieren aceleradores muy potentes para explorar este nuevo territorio de la Física. El LHC es la culminación de una “escalada energética” dirigida a descubrir el bosón de Higgs en los aceleradores de partículas. Cuando alcance su máxima potencia en 2014, el LHC colisionará protones a una energía cercana a 14 teraelectronvoltios (TeV). Actualmente funciona a algo más de la mitad, 8 TeV. En cualquier caso, si existe, la partícula de Higgs se producirá en el LHC.

 

 

¿Cuándo se sabrá si se ha encontrado el bosón de Higgs?

 

En Física de Partículas el concepto de observación se define estadísticamente en términos de desviaciones  estándar  o  ‘sigmas’,  que  indican  la  probabilidad  de  que  un  resultado experimental se deba a la casualidad en vez de ser un efecto real.

 

Para conseguir una mayor significación estadística, y por tanto aumentar las probabilidades de observación, los experimentos necesitan analizar muchos datos. El LHC genera unos 300 millones de colisiones por segundo, por lo que la cantidad de datos a analizar es ingente. Se mide en femtobarns inversos, unidad que da idea de la cantidad de colisiones que se produce en un acelerador de partículas por unidad de área y tiempo (luminosidad).

 

Si una medida tiene 5 sigmas de nivel de certeza se habla de “observación”. Para alcanzar 5 sigmas tendríamos que sacar cara más de 20 veces seguidas, una probabilidad menor de 0,00006%. Para estar seguros de que una observación corresponde a un bosón de Higgs del Modelo Estándar y no a otra partícula diferente, será necesario estudiar en detalle y con más datos las propiedades de la nueva partícula. En concreto, si la forma en que se produce y se desintegra está de acuerdo con lo predicho por la teoría o no, lo cual sería aún más interesante.

 

 

¿Qué sabemos hasta el momento del bosón de Higgs?

 

Búsquedas directas realizadas en anteriores aceleradores de partículas como el LEP del CERN y Tevatron, del Laboratorio Fermi de los Estados Unidos, establecieron que la masa del bosón de Higgs debe ser superior a los 114 GeV (gigaelectronvoltios; 1 gigaelectronvoltio equivale aproximadamente a la masa de un protón). Otras evidencias indirectas observadas en procesos físicos que involucran al bosón de Higgs descartaron una masa superior a 158 GeV.

 

Resultados sobre la búsqueda del bosón de Higgs en el LHC se presentaron en el CERN en diciembre de 2011, obtenidos a partir de 5 femtobarn inversos de datos recopilados desde2010. Estos resultados mostraron que el rango de masas más probable está entre los 116 y los 130 GeV (gigaelectronvoltios), según el experimento ATLAS, y entre 115 y 127 GeV, según el experimento CMS. Lo más interesante es que los dos grandes experimentos del LHC vieron indicios de su presencia en la región comprendida entre los 124 y los 126 GeV.

 

El próximo 4 de julio, ATLAS y CMS presentarán en el CERN nuevos resultados sobre la búsqueda del Higgs con 10 femtobarn inversos de datos en total acumulados en 2011-2012. A finales de 2012 se espera que la cantidad de datos obtenida por ATLAS y CMS permita confirmar o descartar definitivamente la existencia del bosón de Higgs previsto por el Modelo Estándar.

 

 

¿Qué pasa si se descubre el bosón de Higgs?

 

Sería el comienzo de una nueva fase en la Física de Partículas. Marcaría el camino en la investigación de otros muchos fenómenos físicos como la naturaleza de la materia oscura, un tipo   de   materia   que   compone  el   23%   del   Universo  pero  cuyas  propiedades  son completamente desconocidas. Este es otro reto para la disciplina y experimentos como el LHC.

 

 

¿Qué pasa si NO se descubre el bosón de Higgs?

 

No descubrir el bosón de Higgs en los parámetros establecidos en el Modelo Estándar obligará a formular otra teoría para explicar cómo las partículas obtienen su masa, lo que requerirá nuevos experimentos que confirmen o desmientan esta nueva teoría. Así es como funciona la ciencia.

 

 

Beneficios para la sociedad de la física de partículas

 

La tecnología desarrollada en los aceleradores de partículas tiene beneficios indirectos para la Medicina, la Informática, la industria o el medio ambiente. Los imanes superconductores que se usan para acelerar las partículas han sido fundamentales para desarrollar técnicas de diagnóstico por imagen como la resonancia magnética. Los detectores usados para identificar las partículas son la base de los PET, la tomografía por emisión de positrones (antipartícula del electrón). Y cada vez más centros médicos utilizan haces de partículas como terapia contra el cáncer.

 

La World Wide Web (WWW), el ‘lenguaje’ en el que se basa Internet, fue creado en el CERN por Tim Berners-Lee para compartir información entre científicos ubicados alrededor del mundo, y las grandes cantidades de datos que producen los aceleradores de partículas motivan el desarrollo de una red de computación global distribuida llamada GRID.

 

Los  haces  de  partículas  producidos  en  aceleradores  tipo  sincrotrón  o  las  fuentes  de espalación de neutrones, instrumentos creados por los físicos para comprobar la naturaleza de la materia, tienen aplicaciones industriales en la determinación de las propiedades de nuevos materiales, así como para caracterizar estructuras biológicas o nuevos fármacos. Otras aplicaciones de la Física de Partículas son la fabricación de paneles solares, esterilización de recipientes para alimentos o reutilización de residuos nucleares, entre otros muchos campos.

 

 

¿Cuál es la participación española en el LHC?

 

España es miembro del CERN desde 1983. La aportación española es proporcional a su PIB, y se sitúa detrás de Alemania, Reino Unido, Francia e Italia. Además de esta contribución fija, se aportan otros fondos para financiar la actividad de los grupos de investigación españoles que participan en los cuatro experimentos principales del LHC: ATLAS, CMS, LHCb y ALICE.

 

En la plantilla del CERN hay un centenar de españoles, a los que se suma otra serie de personal en las categorías de investigadores (fellows y asociados), estudiantes técnicos y de doctorado, investigadores colaboradores en experimentos del LHC y otros del CERN… En total, 900 científicos e ingenieros españoles participan activamente en el CERN.

 

La participación de los grupos de investigación españoles en el LHC cuenta con el apoyo del Ministerio de Economía y Competitividad a través del Programa Nacional de Física de Partículas y del Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN), proyecto ConsolideroIngenio 2010. Además de haber diseñado y construido varios subdetectores que son clave en la búsqueda de nuevas partículas en el LHC, los grupos españoles participan de forma destacada en su operación y mantenimiento, así como en la recogida, procesado y análisis de las colisiones producidas por los experimentos, incluyendo aquellas que pueden conducir a la observación del bosón de Higgs.

 

 

ATLAS

 

El  experimento  ATLAS  está  formado  por  3.000  científicos  de  174  instituciones procedentes de 38 países, incluyendo la participación de investigadores del Instituto de Física  Corpuscular  (IFIC),  centro  mixto  del  Consejo  Superior  de  Investigaciones Científicas (CSIC) y la Universitat de València; el  Institut de Fisica d'Altes Energies (IFAE), consorcio entre la Generalitat de Catalunya y la Universitat Autònoma de Barcelona; el Instituto de Microelectrónica de Barcelona (CNMoIMBoCSIC); y la Universidad Autónoma de Madrid (UAM).

 

El IFIC, en colaboración con el CNMoIMBoCSIC, ha contribuido al diseño del detector de trazas del experimento ATLAS, su electrónica y sensores, y ha construido 280 módulos de silicio completamente equipados. IFAE, junto con el IFIC, jugó un papel principal en el diseño y construcción del calorímetro hadrónico de ATLAS y se responsabilizó de la construcción de una de las tres secciones centrales del calorímetro formada por 64 módulos de 11 toneladas cada uno. El IFIC ha diseñado y producido la totalidad de la electrónica de lectura y adquisición de datos, mientras que el IFAE desarrolló una parte significativa de la electrónica de calibración y contribuyó a la arquitectura del sistema de Trigger de pre-selección y adquisición en tiempo real de los datos.La UAM participó en la construcción del calorímetro electromagnético, otro de los detectores de ATLAS, haciéndose cargo de la construcción de una cuarta parte.

 

Desde la puesta en marcha del detector ATLAS, los miembros de las diferentes instituciones españolas participan activamente en la operación y mantenimiento de los detectores, con una fuerte presencia en las actividades de alineamiento, calibración y selección de datos online.

 

Dentro del amplio programa de investigación del LHC, los grupos españoles en ATLAS participan en un gran número de líneas de investigación en el análisis de los datos, que cubren muchos de los temas a priori más interesantes del programa del LHC. En particular, en el caso de la búsqueda del bosón de Higgs del Modelo Estándar los grupos han estudiado diferentes estados finales resultado de la desintegración de la partícula de Higgs en dos fotones, dos leptones taus, dos quarks bottom, y dos bosones Z o W.

 

 

CMS

 

En  CMS,  donde  participan  3.275  científicos  de  179  institutos  en  41  países,  están presentes los grupos experimentales del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT); Instituto de Física de Cantabria (IFCA), centro mixto CSIC-Universidad de Cantabria, la Universidad de Oviedo (UO) y la Universidad Autónoma de Madrid (UAM).

 

El CIEMAT ha participado en el desarrollo de prototipos de pequeños imanes superconductores para  el  acelerador, así  como  en  el  diseño  y  construcción de  70 cámaras de muones (25% del total) de CMS y en la fabricación de la electrónica de lectura de estas cámaras. El CIEMAT y el IFCA son responsables del sistema de alineamiento de muones y su electrónica asociada, sistema en el que colabora la UO. La UAM está involucrada en el desarrollo del sistema de selección de datos o Trigger. Además, los grupos españoles desempeñan un papel fundamental en la mayor parte de las actividades relacionadas con el detector de muones de CMS, con responsabilidades directas en mantenimiento, operación, calibración, reconstrucción y futuras mejoras.

 

Al igual que en el caso de ATLAS, la participación de los grupos españoles en actividades de análisis en CMS está muy diversificada y cubre un amplio abanico de los procesos de interés del programa de física del LHC. Todos los grupos participan activamente en la búsqueda del bosón de Higgs. Destaca la participación en el análisis del canal de desintegración del bosón de Higgs en bosones WW, así como en canales asociados a la desintegración en bosones ZZ.

 

 

LHCb

 

La Universidad de Santiago de Compostela (USC), la Universitat de Barcelona (UB) y la Universitat Ramon Llull (URL) han participado en la construcción del Silicon Tracker (ST), del Calorímetro Electromagnético (SPD/PS) y del sistema de trigger del LHCb. Investigadores de las tres universidades tienen importantes responsabilidades tanto en la operación del experimento como en el análisis de los datos que recolecta.

 

 

ALICE

 

El Instituto Galego de Física de Altas Enerxias (IGFAE) de la Universidade de Santiago de Compostela (USC) se encarga de la fenomenología de la física del experimento ALICE, mientras que el CIEMAT participa en tareas de computación asociadas.

 

 

GRID

 

Para llevar a cabo los objetivos científicos del LHC es necesario procesar una cantidad de datos de una complejidad sin precedentes, para lo que se ha desarrollado el mayor sistema  de  procesado  de  datos  jamás  construido  (actualmente  equivalente  a  unos

100.000 núcleos), llamado GRID. Los datos tomados por los detectores del LHC son procesados inicialmente en el CERN, centro Tier-0, y distribuidos posteriormente a otros 11 centros Tier-1, donde se realiza un segundo procesado. Finalmente, son transferidos a otros 100 centros, llamados Tier-2, distribuidos por todo el mundo donde los científicos realizan el análisis final. España contribuye al proyecto a través de un centro Tier-1, el Port de Informació Científica (PIC, consorcio formado por el IFAE, la UAB y el CIEMAT) situado en el campus de la UAB, y 7 Tier-2: IFIC, IFAE, UAM, CIEMAT, IFCA, UB y USC. Retorno industrial y participación de empresas españolas en el LHC

 

La participación de España en el CERN, y en concreto en el LHC y sus experimentos, ha representado una oportunidad única de adquisición de tecnología para las empresas españolas, que han desarrollado know-how en diversas áreas: criogenia, técnicas de vacío ultra-alto, superconductividad, control industrial, electrónica de potencia, e- infraestructuras, etc.

 

En relación con el LHC, España se sitúa como el 5º país con mejor retorno industrial de los participantes, alcanzando las adjudicaciones a empresas españolas el 6,3% del total, lo que supone unos 160,6 millones de euros (200,1 millones de francos suizos). Desde 1995 hasta finales de 2011, la contratación total a empresas españolas para el conjunto de aceleradores del CERN asciende a 306,9 millones de euros (382,2 millones de francos suizos). Fuente CDTI: www.cdti.es

 

En la construcción del LHC participaron más de 35 empresas españolas en ingeniería civil (Empresarios Agrupados, Dragados, IDOM); ingeniería eléctrica (JEMA, ANTEC); ingeniería  mecánica  (Felguera  Contrucciones  Mecánicas,  Asturfeito,  Nortemecánica, Elay, EADSoCASA); tecnologías de vacío y baja temperatura (Telstar, Vacuum projects), electrónica   (GTD,   CRISA,   INSYTE,   SAIFOR);   y   servicios   (IBERINCO,   SENER, INTECSAo INARSA, TAM, AXIMA, SIDASA).

 

La implicación de la industria española en el diseño, construcción y mantenimiento de sistemas  para  el  funcionamiento  de  los  aceleradores  y  detectores  del  CERN  ha significado un incremento notable de las actividades de I+D del sector, así como una mejora de su competitividad de cara a futuros proyectos de relevancia internacional en el área de la Física de Partículas, además de generar exitosos casos de transferencia de las tecnologías otros sectores como las energías renovables, la salud o las tecnologías de la información.

 

 

Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN)

 

El Centro Nacional de Física de Partículas, Astropartículas y Nuclear (CPAN) es un proyecto ConsolideroIngenio 2010 financiado por el Ministerio de Economía y Competitividad a través de la Secretaría de Estado de Investigación, Desarrollo e Innovación, y gestionado por el Consejo Superior de Investigaciones Científicas (CSIC). Está formado por más de 400 científicos de 26 grupos de investigación del CSIC, el Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y varias   Universidades   españolas.  

 

Sus   principales   objetivos   son   la   promoción   y coordinación científica de la participación española en proyectos internacionales, el desarrollo de actividades comunes de I+D y la formación e incorporación a los grupos de nuevos investigadores y técnicos. El CPAN pretende consolidar estas actuaciones mediante la constitución de un centro en red de carácter permanente, análogo a los existentes en otros países de nuestro entorno.

 

 

------------------------------------------------------------

 

MÁS INFORMACIÓN Oficina CPAN

comunicacion@iocpan.es

96 354 48 46

 

Unidad de Comunicación y RR PP del CIEMAT

ucrp@ciemat.es

91346 08 22 / 63 55

 

Web divulgativa sobre el LHC    

http://www.i-cpan.es/lhc.php   

 

Web  del  CERN sobre el seminario de ATLAS y CMS, con acceso a imágenes, vídeos e información sobre el bosón de Higgs

https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=196564

 

-------------------------------------

FUENTE:  CIEMAT


Fuente


Otras noticias del sector

15/04/2024 - La Fundación Caja Ingenieros lanza la 7ª Edición del ‘Premio Ideas Innovadoras Isabel P. Trabal’

 

La Fundación Caja Ingenieros abre el plazo de inscripción para una nueva convocatoria del ‘Premio Ideas Innovadoras Isabel P. Trabal'. El concurso, que este año alcanza su 7ª edición, impulsa el desarrollo de proyectos emprendedores en fase inicial y cuenta en esta ocasión con una dotación económica de 10.000€ para la idea ganadora y 5.000€ más ...


Más información

11/04/2024 - Tecnologías de realidad extendida para la fábrica del futuro

 

La llegada de la cuarta revolución industrial y la introducción de los robots en los procesos de fabricación han puesto de relieve la importancia de una interacción eficaz entre robots y humanos. Dado que las tecnologías de realidad extendida (RX) son fundamentales para que los robots industriales trabajen bien con los humanos en proximidad, la enseñanza ...


Más información

09/04/2024 - Los Ingenieros Industriales homenajean a todos los Presidentes de su Consejo General en los 75 años de su existencia

 

Hoy, 9 de abril de 2024 se cumplen 75 años desde que el Ministerio de Industria y Comercio autorizó la constitución de los Colegios de Ingenieros Industriales y su coordinación a través del, llamado hoy, Consejo General de Colegios Oficiales de Ingenieros Industriales.

 

Dentro de los actos de este aniversario, el Consejo ha ...


Más información

09/04/2024 - El grupo de ingeniería SEGULA Technologies prevé contratar 850 nuevos empleados en la Península Ibérica este año

 

El grupo de ingeniería global SEGULA Technologies acaba de anunciar sus previsiones de contratación en Iberia en 2024: concretamente 850 nuevos empleados, que se unirán a los más de 1.300 que el grupo tiene en la Península Ibérica.

 

SEGULA Technologies es un grupo de ingeniería global que contribuye a aumentar la competitividad ...


Más información

09/04/2024 - La IX edición de los “Premios a la Excelencia Trabajos Fin de Grado de la Comunidad de Madrid” del COGITIM reconocen el talento, la sostenibilidad y la innovación.

 

El Colegio Oficial de Graduados e Ingenieros Técnicos Industriales de Madrid (COGITIM)  celebró el miércoles 3 de abril, el acto de entrega de los “Premios Excelencia a los mejores  Trabajos Fin de Grado de la Comunidad de Madrid (Curso 2021-2022)”, un certamen en el que se han presentado 30 proyectos y han participado 13 Universidades y Escuelas Técnicas de ...


Más información


Banner Bolsa de Trabajo

SUBMETER 4.0

ISF

3S

Prosener

Joole

Portal de Energia

Nanomedicinas

Nanomedicinas

 

Nanotechnology Projects

Application & Drug Delivery


http://www.nanomedicinas.com/

email Ingenieros

ACNUR Submeter ESI

Esta web utiliza cookies con el fin de facilitar y mejorar la navegación a sus usuarios.

Esta web utiliza 'cookies' propias y de terceros para ofrecerte una mejor experiencia y servicio.
Al navegar o utilizar nuestros servicios, aceptas el uso que hacemos de las 'cookies'. Sin embargo, puedes cambiar la configuración de 'cookies' en cualquier momento. Política de Cookies

Acepto las cookies

POLÍTICA DE COOKIES

En cumplimiento de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico (LSSI) y en adecuación con la Directiva Europea 2009/136/CE, le informamos de la utilización de cookies en la presente web con el fin de facilitar y mejorar la navegación a los usuarios.

¿QUÉ SON LAS COOKIES?

Una cookie es un fichero que se descarga en su ordenador al acceder a determinadas páginas web. Las cookies permiten a una página web, entre otras cosas, almacenar y recuperar información sobre los hábitos de navegación de un usuario o de su equipo y, dependiendo de la información que contengan y de la forma en que utilice su equipo, pueden utilizarse para reconocer al usuario.

¿QUÉ TIPOS DE COOKIES UTILIZA NUESTRA WEB?

  • Cookies de rendimiento: Estas cookies se utilizan para mejorar su experiencia de navegación y optimizar el funcionamiento del sitio web. Almacenan configuraciones de servicios para que no tenga que reconfigurarlos cada vez que visite este sitio web.
  • Cookies de análisis: Son aquéllas que bien tratadas por nosotros o por terceros, nos permiten cuantificar el número de usuarios y así realizar la medición y análisis estadístico de la utilización que hacen los usuarios del servicio ofertado. Para ello se analiza su navegación en nuestra página web con el fin de mejorar la oferta de productos o servicios que le ofrecemos.

¿CÓMO GESTIONAR LAS COOKIES DE SU NAVEGADOR?

Puede usted permitir, bloquear o eliminar las cookies instaladas en su equipo mediante la configuración de las opciones del navegador instalado en su ordenador.

ACEPTACIÓN DE COOKIES

Usted, una vez informado sobre la Política de Cookies, puede aceptar la utilización de las mismas por parte de esta web. Sin embargo, puede cambiar la configuración de cookies en cualquier momento, configurando su navegador para aceptar, o no, las cookies que recibe o para que el navegador le avise cuando un servidor quiera guardar una cookie.

Le informamos que en el caso de bloquear o no aceptar la instalación de cookies, es posible que ciertos servicios no estén disponibles sin la utilización de éstas o que no pueda acceder a determinados servicios ni tampoco aprovechar por completo todo lo que nuestras web le ofrece. Además del uso de cookies propias, permitimos a terceros establecer cookies y acceder a ellas en su ordenador.

Le agradecemos que consienta la aceptación de cookies, esto nos ayuda a obtener datos más precisos que nos permiten mejorar el contenido, así como mejorar la usabilidad de la web.

En caso de que este sitio web prestara algún tipo de servicio especial en el que determine unas previsiones específicas diferentes a éstas en lo relativo a la protección de datos personales y la utilización de cookies, prevalecerán las normas particulares indicadas para ese servicio en particular sobre las presentes.

Al acceder a este sitio web por primera vez verá una ventana donde se le informa de la utilización de las cookies, y donde puede consultar la presente "Política de cookies". Si usted acepta expresamente la utilización de cookies, continúa navegando o hace clic en algún link se entenderá que usted ha consentido nuestra política de cookies y por tanto la instalación de las mismas en su equipo o dispositivo.

ACTUALIZACIÓN DE NUESTRA POLÍTICA DE COOKIES

Es posible que actualicemos la Política de Cookies de este sitio web, por ello le recomendamos revisar esta política cada vez que acceda al mismo con el objetivo de estar adecuadamente informado sobre cómo y para qué usamos las cookies. La Política de Cookies se actualizó por última vez el 02 de Septiembre de 2013.

Hosting Lampung Jasa Rekber