E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower | | AC/DC Formulas | | | | | | | | | |------------------------|------------------|----------------------|---------------------------------|-------------------------------|--|--|--|--|--| | To Find | Direct Current | | AC / 1phase
208,230, or 240v | AC 3 phase
All Voltages | | | | | | | Amps when | HP x 746 | HP x 746 | HP x 746 | HP x 746 | | | | | | | Horsepower is Known | E x Eff | E x Eff X PF | E x Eff x PF | 1.73 x E x Eff x PF | | | | | | | Amps when | <u>kW x 1000</u> | <u>kW x 1000</u> | <u>kW x 1000</u> | <u>kW x 1000</u> | | | | | | | Kilowatts is known | E | E x PF | E x PF | 1.73 x E x PF | | | | | | | Amps when kVA is known | | kVA x 1000
E | <u>kVA x 1000</u>
E | <u>kVA x 1000</u>
1.73 x E | | | | | | | Kilowatts | <u>I x E</u> | 1x E x PF | 1 x E x PF | <u>I x E x 1.73 PF</u> | | | | | | | | 1000 | 1000 | 1000 | 1000 | | | | | | | Kilovolt-Amps | | <u>I x E</u>
1000 | <u>I x E</u>
1000 | 1 x E x 1.73
1000 | | | | | | | Horsepower (output) | 1 x E x Eff | 1 x E x Eff x PF | 1 x E x Eff x PF | I x E x Eff x 1.73 x PF | | | | | | | | 746 | 746 | 746 | 746 | | | | | | | Three Phase Values | |--------------------------------| | For 208 volts x 1.732, use 360 | | For 230 volts x 1.732, use 398 | | For 240 volts x 1.732, use 416 | | For 440 volts x 1.732, use 762 | | For 460 volts x 1.732, use 797 | | For 480 Volts x 1.732, use 831 | ## E = Voltage / I = Amps /W = Watts / PF = Power Factor / Eff = Efficiency / HP = Horsepower | | | Voltage Dr | op Formulas | |---------------|------|-------------------------|---| | Single Phase | VD = | 2xKxIxL
CM | K = ohms per mil foot | | (2 or 3 wire) | CM= | <u>2K x L x I</u>
VD | (Copper = 12.9 at 75°) | | | VD= | 1.73 x K x I x L
CM | (Alum = 21.2 at 75°) Note: K value changes with temperature. See Code | | Thurs Dhass | | | chapter 9, Table 8 | | Three Phase | CM= | 1.73 x K x L x I
VD | L = Length of conductor in feet | | | | | I = Current in conductor (amperes) | | | | | CM = Circular mil area of conductor | ## **Calculating Motor Speed:** A squirrel cage induction motor is a constant speed device. It cannot operate for any length of time at speeds below those shown on the nameplate without danger of burning out. To Calculate the speed of a induction motor, apply this formula: **S***r*pm = synchronous revolutions per minute. 120 = constant = supply frequency (in cycles/sec) P = number of motor winding poles **Example:** What is the synchronous of a motor having 4 poles connected to a 60 hz power supply? $$Srpm = \frac{120 \times F}{P}$$ $$Srpm = \frac{120 \times 60}{4}$$ $$Srpm = \frac{7200}{4}$$ ### **Calculating Braking Torque:** Full-load motor torque is calculated to determine the required braking torque of a motor. To Determine braking torque of a motor, apply this formula: $$T = \frac{5252 \times HP}{rpm}$$ T = full-load motor torque (in lb-ft) 5252 = constant (33,000 divided by 3.14 x 2 = 5252) HP = motor horsepower rpm = speed of motor shaft **Example:** What is the braking torque of a 60 HP, 240V motor rotating at 1725 rpm? $T = \underbrace{5252 \times HP}_{rpm}$ $T = \underbrace{5252 \times 60}_{1725}$ $T = \underbrace{315,120}_{1725}$ T = 182.7 lb-ft #### **Calculating Work:** Work is applying a force over a distance. Force is any cause that changes the position, motion, direction, or shape of an object. Work is done when a force overcomes a resistance. Resistance is any force that tends to hinder the movement of an object. If an applied force does not cause motion the no work is produced. To calculate the amount of work produced, apply this formula: $$W = F \times D$$ W = work (in lb-ft) F = force (in lb) D = distance (in ft) **Example:** How much work is required to carry a 25 lb bag of groceries vertically from street level to the 4th floor of a building 30' above street level? $W = F \times D$ $W = 25 \times 30$ W = 750 - lb #### **Calculating Torque:** Torque is the force that produces rotation. It causes an object to rotate. Torque consist of a force acting on distance. Torque, like work, is measured is pound-feet (lb-ft). However, torque, unlike work, may exist even though no movement occurs. To calculate torque, apply this formula: ``` T = F \times D ``` T = torque (in lb-ft) F = force (in lb) D = distance (in ft) **Example:** What is the torque produced by a 60 lb force pushing on a 3' lever arm? T = F x D T = 60 x 3 T = 180 lb ft #### **Calculating Full-load Torque:** Full-load torque is the torque to produce the rated power at full speed of the motor. The amount of torque a motor produces at rated power and full speed can be found by using a horsepower-to-torque conversion chart. When using the conversion chart, place a straight edge along the two known quantities and read the unknown quantity on the third line. To calculate motor full-load torque, apply this formula: $$T = \frac{HP \times 5252}{rpm}$$ T = torque (in lb-ft) HP = horsepower 5252 = constant rpm = revolutions per minute **Example:** What is the FLT (Full-load torque) of a 30HP motor operating at 1725 rpm? $T = \frac{HP \times 5252}{rpm}$ $T = \frac{30 \times 5252}{1725}$ $T = \frac{157,560}{1725}$ T = 91.34 lb-ft #### Calculating Horsepower: Electrical power is rated in horsepower or watts. A horsepower is a unit of power equal to 746 watts or 33,0000 lb-ft per minute (550 lb-ft per second). A watt is a unit of measure equal to the power produced by a current of 1 amp across the potential difference of 1 volt. It is 1/746 of 1 horsepower. The watt is the base unit of electrical power. Motor power is rated in horsepower and watts. Horsepower is used to measure the energy produced by an electric motor while doing work. To calculate the horsepower of a motor when current and efficiency, and voltage are known, apply this formula: $$\frac{\mathsf{HP}}{\mathsf{746}} = \frac{\mathsf{V} \times \mathsf{I} \times \mathsf{Eff}}{\mathsf{746}}$$ HP = horsepower V = voltage I = curent (amps) Eff. = efficiency Example: What is the horsepower of a 230v motor pulling 4 amps and having 82% efficiency? HP = $$\frac{V \times I \times Eff}{746}$$ HP = $\frac{230 \times 4 \times .82}{746}$ HP = $\frac{754.4}{746}$ HP = 1 Hp Eff = efficiency / HP = horsepower / V = volts / A = amps / PF = power factor | | Horsepower Formulas | | | | | | | | |---------------------|--|---------------------------------|------|--|--|--|--|--| | To Find | Use Formula | | Exam | ple | | | | | | TO FINA USE FORMULA | | Given | Find | Solution | | | | | | HP | HP = <u>I X E X Eff.</u>
746 | 240V, 20A, 85% Eff. | HP | HP = 240V x 20A x 85%
746
HP=5.5 | | | | | | I | I = <u>HP x 746</u>
E X Eff x PF | 10HP, 240V,
90% Eff., 88% PF | I | I = <u>10HP x 746</u>
240V x 90% x 88%
I = 39 A | | | | | To calculate the horsepower of a motor when the speed and torque are known, apply this formula: $$\frac{\text{HP} = \underline{\text{rpm x T(torque)}}}{5252(\text{constant)}}$$ Example: What is the horsepower of a 1725 rpm motor with a FLT 3.1 lb-ft? $$HP = \frac{\text{rpm x T}}{5252}$$ $$HP = \frac{1725 \text{ x } 3.1}{5252}$$ #### Calculating Synchronous Speed: AC motors are considered constant speed motors. This is because the synchronous speed of an induction motor is based on the supply frequency and the number of poles in the motor winding. Motor are designed for 60 hz use have synchronous speeds of 3600, 1800, 1200, 900, 720, 600, 514, and 450 rpm. To calculate synchronous speed of an induction motor, apply this formula: $$\frac{\text{rpmsyn} = \underline{120 \text{ x f}}}{\text{Np}}$$ rpmsyn = synchronous speed (in rpm) = supply frequency in (cycles/sec) = number of motor poles Np **Example:** What is the synchronous speed of a four pole motor operating at 50 hz.? $$rpmsyn = \frac{120 \text{ x f}}{Np}$$ $$rpmsyn = \frac{120 \text{ x } 50}{4}$$ $$rpmsyn = \frac{6000}{4}$$ $$rpmsyn = 1500 \text{ rpm}$$ To better understand the following formulas review the rule of transposition in equations. A multiplier may be removed from one side of an equation by making it a division on the other side, or a division may be removed from one side of an equation by making it a multiplier on the other side. 1. Voltage and Current: Primary (p) secondary (s) Power(p) = power (s) or Ep x Ip = Es x Is A. $$Ep = \frac{Es \times Is}{Ip}$$ A. $$Ep = \frac{Es \times Is}{Ip}$$ B. $Ip = \frac{Es \times Is}{Ep}$ C. $$Is = \frac{Ep \times Ip}{Es}$$ D. $Es = \frac{Ep \times Ip}{Is}$ D. Es = $$\frac{\text{Ep x lp}}{\text{ls}}$$ 2. Voltage and Turns in Coil: Voltage (p) x Turns (s) = Voltage (s) x Turns (p) or Ep x Ts = Es x Ip A. $$Ep = \frac{Es \times Ip}{Ts}$$ B. $Ts = \frac{Es \times Tp}{Ep}$ C. $$Tp = \frac{Ep \times Ts}{Es}$$ D. $Es = \frac{Ep \times Ts}{Tp}$ 3. Amperes and Turns in Coil: Amperes (p) x Turns (p) = Amperes (s) x Turns (s) or Ip x Tp = Is x Ts A. $$Ip = \frac{Is \times Ts}{Tp}$$ B. $Tp = \frac{Is \times Ts}{Ip}$ C. $$Ts = \frac{Ip \times Tp}{Is}$$ D. $Is = \frac{Ip \times Tp}{Ts}$ | | DC Motors | | | | | | | | | |-----------------|-----------|------|------|------|------|------|--|--|--| | Horse-
power | 90v | 120v | 180v | 240v | 500v | 550v | | | | | | | | Amp | eres | | | | | | | 1/4 | 4.0 | 3.1 | 2.0 | 1.6 | | | | | | | 1/3 | 5.2 | 4.1 | 2.6 | 2.0 | | | | | | | 1/2 | 6.8 | 5.4 | 3.4 | 2.7 | | | | | | | 3/4 | 9.6 | 7.6 | 4.8 | 3.8 | | | | | | | 1 | 12.2 | 9.5 | 6.1 | 4.7 | | | | | | | 1-1/2 | | 13.2 | 8.3 | 6.6 | | | | | | | 2 | | 17 | 10.8 | 8.5 | | | | | | | 3 | | 25 | 16 | 12.2 | | | | | | | 5 | | 40 | 27 | 20 | | | | | | | 7-1/2 | | 58 | | 29 | 13.6 | 12.2 | | | | | Horse-
power | 90v | 120v | 180v | 240v | 500v | 550v | | | | | | | | Amp | eres | | | | | | | 10 | | 76 | | 38 | 18 | 16 | | | | | 15 | | | | 38 | 18 | 16 | | | | | 20 | | | | 55 | 27 | 24 | | | | | 25 | | | | 89 | 43 | 38 | | | | | 30 | | | | 106 | 51 | 46 | | | | | 40 | | | | 140 | 67 | 61 | | | | | Horse-
power | 90v | 120v | 180v | 240v | 500v | 550v | | | | | | Amperes | | | | | | | |-----|---------|--|--|-----|-----|-----|--| | 50 | | | | 173 | 83 | 75 | | | 60 | | | | 206 | 99 | 90 | | | 75 | | | | 255 | 123 | 111 | | | 100 | | | | 341 | 164 | 148 | | | 125 | | | | 425 | 205 | 185 | | | 150 | | | | 506 | 246 | 222 | | | 200 | | | | 675 | 330 | 294 | | | AC | AC Single Phase Motors | | | | | | | | |-----------------|------------------------|------|------|------|--|--|--|--| | Horse-
power | 115v 200v 208v 23 | | | | | | | | | | | Amp | eres | | | | | | | 1/6 | 4.4 | 2.5 | 2.4 | 2.2 | | | | | | 1/4 | 5.8 | 3.3 | 3.2 | 2.9 | | | | | | 1/3 | 7.2 | 4.1 | 4.0 | 3.6 | | | | | | 1/2 | 9.8 | 5.6 | 5.4 | 4.9 | | | | | | 3/4 | 13.8 | 7.9 | 7.6 | 6.9 | | | | | | 1 | 16 | 9.2 | 8.8 | 8.0 | | | | | | 1-1/2 | 20 | 11.5 | 11 | 10 | | | | | | 2 | 24 | 13.8 | 13.2 | 12 | | | | | | 3 | 34 | 19.6 | 18.7 | 17 | | | | | | 5 | 56 | 32.2 | 30.8 | 28 | | | | | | 7-1/2 | 80 | 46 | 44 | 40 | | | | | | 10 | 100 | 57.5 | 55 | 50 | | | | | | Horse-
power | 115v | 200v | 208v | 230v | | | | | | | 2 Phase (4 wire) AC Induction Type
Squirrel Cage and Wound Rotor | | | | | | | | |-----------------|---|------|------|------|-------|--|--|--| | Horse-
power | 115v | 230v | 460v | 575v | 2300v | | | | | | | A | mper | es | | | | | | 1/2 | 4.0 | 2.0 | 1.0 | 0.8 | | | | | | 3/4 | 4.8 | 2.4 | 1.2 | 1.0 | | | | | | 1 | 6.4 | 3.2 | 1.6 | 1.3 | | | | | | 1-1/2 | 9.0 | 4.5 | 2.3 | 1.8 | | | | | | 2 | 11.8 | 5.9 | 3.0 | 2.4 | | | | | | 3 | | 8.3 | 4.2 | 3.3 | | | | | | 5 | | 13.2 | 6.6 | 5.3 | | | | | | 10 | | 24 | 12 | 10 | | | | | | 15 | | 36 | 18 | 14 | | | | | | 20 | | 47 | 23 | 19 | | |-----------------|------|------|------|------|-------| | 25 | | 59 | 29 | 24 | | | 30 | | 69 | 35 | 28 | | | 40 | | 90 | 45 | 36 | | | Horse-
power | 115v | 230v | 460v | 575v | 2300v | | | | A | mper | es | | | 50 | | 113 | 56 | 45 | | | 60 | | 133 | 67 | 53 | 14 | | 75 | | 166 | 83 | 66 | 18 | | 100 | | 218 | 109 | 87 | 23 | | 125 | | 270 | 135 | 108 | 28 | | 150 | | 312 | 156 | 125 | 32 | | 200 | | 416 | 208 | 167 | 43 | | <u>AC 3</u> | AC 3 Phase Induction Type Squirrel Cage and Wound Rotor | | | | | | | | | |-----------------|---|------|------|-------|------|------|-------|--|--| | Horse-
power | 115V | 200V | 208V | 230V | 460V | 575V | 2300V | | | | | | | A | Amper | es | | | | | | 1/2 | 4.4 | 2.5 | 2.4 | 2.2 | 1.1 | 0.9 | | | | | 3/4 | 6.4 | 3.7 | 3.5 | 3.2 | 1.6 | 1.3 | | | | | 1 | 8.4 | 4.8 | 4.6 | 4.2 | 2.1 | 1.7 | | | | | 1-1/2 | 12.0 | 6.9 | 6.6 | 6.0 | 3.0 | 2.4 | | | | | 2 | 13.6 | 7.8 | 7.5 | 6.8 | 3.4 | 2.7 | | | | | 3 | | 11.0 | 10.6 | 9.6 | 4.8 | 3.9 | | | | | 5 | | 17.5 | 16.7 | 15.2 | 7.6 | 6.1 | | | | | 7-1/2 | | 25.3 | 24.2 | 22 | 11 | 9 | | | | | Horse-
power | 115v | 200v | 208v | 230v | 460v | 575v | 2300v | | | | 10 | | 32.2 | 30.8 | 28 | 14 | 11 | | | | | 15 | | 48.3 | 46.2 | 42 | 21 | 17 | | | | | 20 | | 62.1 | 59.4 | 54 | 27 | 22 | | | | | 25 | | 78.2 | 74.8 | 68 | 34 | 27 | | | | | 30 | | 92 | 88 | 80 | 40 | 32 | | | | | 40 | | 120 | 114 | 104 | 52 | 41 | | | | | Horse-
power | 115v | 200v | 208v | 230v | 460v | 575v | 2300v | | | | 50 | | 150 | 143 | 130 | 65 | 52 | | | | | 60 | | 177 | 169 | 154 | 77 | 62 | 16 | | | | 75 | | 221 | 211 | 192 | 96 | 77 | 20 | | | | 100 | | 285 | 273 | 248 | 124 | 99 | 26 | | | | 125 | | 359 | 343 | 312 | 156 | 125 | 31 | | |-----------------|---------|------|------|------|------|------|-------|--| | 150 | | 414 | 396 | 360 | 180 | 144 | 37 | | | 200 | | 552 | 528 | 480 | 240 | 192 | 49 | | | Horse-
power | 115v | 200v | 208v | 230v | 460v | 575v | 2300v | | | | Amperes | | | | | | | | | 250 | | | | | 302 | 242 | 60 | | | 300 | | | | | 361 | 289 | 72 | | | 350 | | | | | 414 | 336 | 83 | | | 400 | | | | | 477 | 382 | 95 | | | 450 | | | | | 515 | 412 | 103 | | | 500 | | | | | 590 | 472 | 118 | | | AC 3 I | AC 3 Phase Synchronous Type Unity Power Factor | | | | | | | | |-----------------|--|------|-------|-------|--|--|--|--| | Horse-
power | 230v | 460v | 575v | 2300v | | | | | | | | Amp | oeres | | | | | | | 25 | 53 | 26 | 21 | | | | | | | 30 | 63 | 32 | 26 | | | | | | | 40 | 83 | 41 | 33 | | | | | | | 50 | 104 | 52 | 42 | | | | | | | 60 | 123 | 61 | 49 | 12 | | | | | | 75 | 155 | 78 | 62 | 15 | | | | | | 100 | 202 | 101 | 81 | 20 | | | | | | 125 | 253 | 126 | 101 | 25 | | | | | | 150 | 302 | 151 | 121 | 30 | | | | | | 200 | 400 | 201 | 161 | 40 | | | | | | Horse-
power | 230v | 460v | 575v | 2300v | | | | |